Low-resource text classification using domain-adversarial learning
نویسندگان
چکیده
منابع مشابه
Adversarial Multi-task Learning for Text Classification
Neural network models have shown their promising opportunities for multi-task learning, which focus on learning the shared layers to extract the common and task-invariant features. However, in most existing approaches, the extracted shared features are prone to be contaminated by task-specific features or the noise brought by other tasks. In this paper, we propose an adversarial multi-task lear...
متن کاملMultinomial Adversarial Networks for Multi-Domain Text Classification
Many text classification tasks are known to be highly domain-dependent. Unfortunately, the availability of training data can vary drastically across domains. Worse still, for some domains there may not be any annotated data at all. In this work, we propose a multinomial adversarial network (MAN) to tackle the text classification problem in this real-world multidomain setting (MDTC). We provide ...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملCross-domain Text Classification using Wikipedia
Traditional approaches to document classification requires labeled data in order to construct reliable and accurate classifiers. Unfortunately, labeled data are seldom available, and often too expensive to obtain, especially for large domains and fast evolving scenarios. Given a learning task for which training data are not available, abundant labeled data may exist for a different but related ...
متن کاملText Readability Classification of Textbooks of a Low-Resource Language
There are many languages considered to be low-density languages, either because the population speaking the language is not very large, or because insufficient digitized text material is available in the language even though millions of people speak the language. Bangla is one of the latter ones. Readability classification is an important Natural Language Processing (NLP) application that can b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Speech & Language
سال: 2020
ISSN: 0885-2308
DOI: 10.1016/j.csl.2019.101056